On some classical type Sobolev orthogonal polynomials
نویسندگان
چکیده
منابع مشابه
Estimates for Jacobi-sobolev Type Orthogonal Polynomials
Let the Sobolev-type inner product 〈f, g〉 = ∫
متن کاملOn Sobolev type orthogonal polynomials with unbounded support: asymptotic properties
In this expository paper we present a survey about asymptotic properties of Sobolev type orthogonal polynomials with unbounded support.
متن کاملSobolev Orthogonal Polynomials on a Simplex
The Jacobi polynomials on the simplex are orthogonal polynomials with respect to the weight function Wγ(x) = x γ1 1 · · ·x γd d (1− |x|)d+1 when all γi > −1 and they are eigenfunctions of a second order partial differential operator Lγ . The singular cases that some, or all, γ1, . . . , γd+1 are −1 are studied in this paper. Firstly a complete basis of polynomials that are eigenfunctions of Lγ ...
متن کاملJacobi-Sobolev orthogonal polynomials: Asymptotics and a Cohen type inequality
Let dμα,β(x) = (1−x)(1+x)dx, α, β > −1, be the Jacobi measure supported on the interval [−1, 1]. Let us introduce the Sobolev inner product
متن کاملZeros of Sobolev Orthogonal Polynomials of Gegenbauer Type
where l > 0 and {dk0, dk1} is a so-called symmetrically coherent pair, with dk0 or dk1 the classical Gegenbauer measure (x−1) dx, a > −1. If dk1 is the Gegenbauer measure, then Sn has n different, real zeros. If dk0 is the Gegenbauer measure, then Sn has at least n−2 different, real zeros. Under certain conditions Sn has complex zeros. Also the location of the zeros of Sn with respect to Gegenb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2020
ISSN: 0021-9045
DOI: 10.1016/j.jat.2019.105337